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Summary 
 

 This project was developed to detect fraudulent clicks on mobile app advertisements and 

to predict whether or not a user will download the app after clicking on the ad. 

 For this, a predictive model of supervised Machine Learning was implemented based on 

historical data. This data was provided by TalkingData (Chinese company) to Google LLC's Kaggle, 

an online community of data science and machine learning, as open data for the community to 

use. 

 With the data provided, exploratory analyzes were developed to identify higher access IPs, 

with more clicks on advertisements, more downloaded applications, more clicked and less 

downloaded applications (possible frauds), tracking IP’s accesses listed by day and hour, and 

others analytics that provide business intelligence opportunities. 

 After exploring all the information provided by the data, three predictive models were 

implemented in training data to analyze the accuracy of the model. By selecting the best machine 

learning model, new (previously unknown) data was introduced into the model to test its 

efficiency by presenting the results through a confusion matrix. 

This project was developed in R programming language and the exploratory analysis will 

be presented through PowerBi with interactive graphics highlighting the trail that each IP leaves 

when accessing mobile applications, including business opportunities for digital marketing and 

application advertising companies. 

 

Palavras – Chave: Data Science, Machine Learning, R, PowerBi, Exploratory Analysis, Business Intelligence, 

BI, caret, dplyr, Predictive model, Accuracy, Confusion Matrix, Fraud Detection, Mobile Applications, 

TalkingData, Kaggle. 
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1 – Introduction 
 

 This project was developed in R programming language using RStudio1 as a script2 

development and testing platform. 

 To complement the knowledge of the data and provide a better view of IP clicks, PowerBi3 

was also used to create a dashboard with interactive graphics for the Business Intelligence 

process. 

 Some libraries with essential packages for code development were also used, such as 

caret for machine learning, dplyr for data manipulation, lubrication for date and time 

manipulation, scale for variable normalization, among others which will be explained in the 

following chapters. 

 Like any Data Science project, before starting the parameterization of the predictive 

model it is necessary to perform exploratory analysis and to know the data set. During this 

procedure, some information that could present problems to the predictive model was 

transformed into new data and, as a result, Business Intelligence analysis presented several 

business opportunities, also highlighted in the chapter in question. 

 To conclude, we will present all script items, commented line by line and presenting 

graphical analysis to complement the understanding of the development of this Data Science 

project. 

 The beginning of business problem solving lies in understanding the problem itself which 

will be presented in the following chapter. 

 

 

 

 

 
1 Rstudio is a free integrated development environment software for R, a programming language for graphs and 
statistical calculations. 
2 Script is a set of code instructions written in computer language to perform various functions within a program. 
3 Developed and powered by Microsoft, Power BI is a Business Intelligence toolkit used to create cloud dashboards 
for data and business analytics. 
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2 – Business Problem 
 

TalkingData4 founded in 2011 is a Chinese data intelligence company empowering and 

helping its partner companies to transform the data-driven organizational culture. 

TalkingData's role in addition to developing intelligent data-based applications is also to 

help people and the world improve through the technological evolution of the big data industry. 

With this, the company has also developed open source projects cooperating with 

renowned universities such as MIT Media Laboratory, Stanford Artificial Intelligence Laboratory, 

and Caltech Engineering and Applied Science Department. 

Covering over 70% of active mobile devices across China, TalkingData has become in 7 

years the largest BigData platform in the country handling 3 billion mobile app ad clicks per day 

where 90% are potentially fraudulent. 

While the risk of fraud is everywhere, the impact of massive online ad clicks can lead to 

the loss of money, containing misleading potential customer data, thereby increasing the cost of 

advertisers and operational staff as advertiser pays a fee for each click executed, even if the app 

was not downloaded. 

China has the largest mobile market in the world with over 1 billion devices in use every 

month, thus suffering from click fraud. With that in mind TalkingData is asking for an 

improvement in its operation by creating an algorithm that can predict whether or not a user will 

download an app after clicking an ad on the mobile device. 

In other words, what TalkingData wants is to build a machine learning model that can 

conclude whether a new user is prone to click fraud, be it a robot or a person, by analyzing the 

portfolio's click journey signaling IP addresses with many clicks but few downloads. 

 In addition to generating greater reliability for advertiser companies, this project seeks to 

introduce business intelligence by generating opportunities and increasing profitability not only 

for partner companies, but also for TalkingData. 

 

 

 
4 https://www.talkingdata.com 
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3 – Dataset Used 
 

For this business problem TalkingData provided the following data set: 

1. train.csv 
 

This dataset is structured as follows: 

  

Figura 1 - Dataset train.csv 

The dataset has 7.10 GB which corresponds to approximately 185 million rows of data 

divided into 7 variables, one of which being the predictor variable. 

In the next chapter follows the Data Dictionary with the structuring of variables. 
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4 – Data Dictionary 
 

Variável Significado 
ip ip address of click 

app app id for marketing 

device 
device type id of user mobile phone (e.g., iphone 6 plus, iphone 

7, huawei mate 7, etc.) 

os operational system version id of user mobile phone 

channel channel id of mobile ad publisher 

click_time timestamp of click (UTC) 

attributed_time 
time the user downloaded the app after clicking on the app 

advertisement 

is_attributed 
This is the predictor variable, the purpose of the study, 

indicating whether the app was downloaded or not. 
Figura 2 – Data Dictionary 

 As noted, the dataset has a variable called “click_time” that presents unique information 

with the date and time the user clicked. This variable is in the Coordinated Universal Time (UTC) 

time zone and thus will remain for the creation of the predictive model, it will only be changed 

for the moments of exploratory analysis and presentation of results in PowerBi during the 

Business Intelligence process so that the understanding  of the times with more and less acesses 

become clearer. 

 Code used to read datasets: 

 

Figura 3 – Loading Dataset train.csv 

 

 The following chapters will present exploratory analysis and feature engineering adding 

relevant variables to the predictive model. 

 Next we will cover the libraries used. 
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5 – Libraries used 
 

Using libraries is essential for the progress of a Data Science project. In this project the 

following libraries were used: 

• data.table5: provides an improved version of data.frame; 

• dplyr6: data manipulation facilitator; 

• readr7: file reader; 

• caret8: Machine Learning library; 

• lubridate9: package with functions to manipulate dates and times; 

• scales10: library used to scale data. 

These libraries carry a series of packaged code providing more consistent and reliable 

results and agility as the code is ready, optimizing data analysis tasks. 

 Code used to load libraries: 

 

Figura 4 - Loading libraries 

  

It is common to start a project with exploratory analysis and understand what the data 

provided are showing us and then draw a feature engineering strategy, but here we will reverse 

the order since the data has few variables and the date / time field is with more than one 

information in the same column, which is even be the subject of the next chapter. 

 
5 https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html 
6 https://www.rdocumentation.org/packages/dplyr/versions/0.7.8 
7 https://cran.r-project.org/web/packages/readr/readr.pdf 
8 http://topepo.github.io/caret/index.html 
9 https://cran.r-project.org/web/packages/lubridate/lubridate.pdf 
10 https://cran.r-project.org/web/packages/scales/scales.pdf 

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
https://cran.r-project.org/web/packages/readr/readr.pdf
http://topepo.github.io/caret/index.html
https://cran.r-project.org/web/packages/lubridate/lubridate.pdf
https://cran.r-project.org/web/packages/scales/scales.pdf
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6 – Feature Engineering 

Feature Engineering is the process of handling, adding, and removing variables. This 

process consists of finding out which data columns create the most useful attributes for 

improving the accuracy of the machine learning model.  

 During the loading of the variables I performed an analysis on the dataset and got an 

interesting result: the data distribution of the predictor variable (is_attributed) is totally 

unbalanced. This is a big problem, not now, but at the end of the Data Science process, that is, 

when creating the machine learning model. 

 Statistically we have in the variable “is_attributed”: 

• 00.25% of data with “1” as attribute and; 

• 99.75% of data with “0” as attribute. 

The ideal is to generate a machine learning model that can predict both one attribute and 

another, but if I use the predictor variable data in this way I will generate bias and very possibly 

my model will fail. 

In order to prevent the failure from happening I decided to assemble a training dataset 

that had exactly 50% of the data with “1” as an attribute and 50% of the data with “0” and after 

training acquire new, random and unknown data to test if the model was successful in this way. 

The result was very satisfactory and I describe all the steps in the following chapters. 

After splitting the data back to feature engineering identifying good and bad attributes 

reflecting the final result, another possibility is to add relevant variables based on the data 

provided, which was the approach taken. 

As the “click_time” variable has a date and time in only one piece of information, I 

converted this data to new variables using the lubricated library, namely: 

• year 

• month 

• day 

• hour 

• minutes 

• second 

• yday 

• wday 

• week 
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 Each new variable above, added to the dataset, corresponds to a portion of the 

information that the “click_time” item carries internally. Follows dataset after addition: 

 

Figura 5 - Table after feature engineering 

In addition to the added variables, for good practice the name of the predictor variable 

“is_attributed” was replaced by “target”, as indicated by the red arrow in the figure above. 

After the addition of the new variables, the column “click_time” had the scale changed 

already preparing for the interpretation of the machine learning model, that is, the distribution 

of the values began to occupy a variation between 0 and 1. An important observation to to do is 

that there was no exchange of information present in the variable, only the scale has been moved 

to values where the machine learning model can understand and estimate new values. 

Using 2 charts for better understanding: 

The following is the distribution of the “click_time” data in its original form, represented 

by figure 6, and the data distribution of this variable after scaling, represented by figure 7: 

 

Figura 6 - click_time before rescale 
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Figures 6 and 7 indicate data distribution, note the variation in scale indicated by the red 

and yellow arrows respectively. The scale changed but the distribution remained the same.  

 

Figura 7 - click_time after rescale 

Follows code used in this process: 

 

Figura 8 - Feature Engineering Code Part I 
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Figura 9 - Feature Engineering Code Part II 

 With feature engineering finished, we can move to the beginning of the exploratory 

analysis process. 
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7 – Exploratory Analysis I 

Exploratory analysis is critical to understanding where we have the best variables, where 

we have problems, where we have business opportunities, and in this way, we can generate a 

number of important conclusions to continue the machine learning process. 

For this project, PowerBi was chosen as a graphical viewer because it offers a platform 

with varied features assisting in the company's Business Intelligence. 

PowerBi brings a professional way to create high-level interactive dashboards assisting 

data analysis enabling you to monitor any business need in real time. 

After handling variables in the previous chapter, the following dashboard was created: 

 

Figura 10 - Dashboard IP Accesses 

As noted, we have a lot of information inside a dashboard. 
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Figura 11 – Dashboard Analysis 

1. Number of Accesses 

The number of accesses corresponds to the total value of interactions that a given item 

performed within the analyzed period. For this project it was limited to 100,000 accesses 

between days 7, 8 and 9. The items that can be analyzed are: IP's, Accesses by Hour, Accesses by 

Hour each Day, Devices used for access and all applications downloaded or not in this period. 

2. Top 30 IP’s 

 This item shows the 30 most accessed IP's in this period. It also works as a filter allowing 

to analyze by IP all other information (Accesses by Hour, Accesses by Hour each Day, Devices 

used for access and all applications downloaded or not during this period). During Business 

Intelligence analysis in the next chapters this item will indicate important information for decision 

makers. 

3. Top Used Devices 

TalkingData-encoded item that identifies the most commonly used devices for access 

within the specified time period. 

 1 

 2 

 3 
 4 

 5  6 

 7 

 8  9 
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4. IP Filtering 

Filter 1 or more IP's at the same time for access analysis and tracking. 

5. Accesses by Hour 

Indicative graph of the number of accesses per hour considering the whole period (days 

7, 8 and 9). 

6. Accesses by Hour each Day 

Graph indicating the number of accesses per hour per day. 

7. Accesses Indicator 

Number of accesses indicator each day of the week. 

 

8. Apps Downloaded or not 

This item displays all applications that have linked advertisements and clicks through the 

IPs. The graph shows the number of clicks per application and also if after the click the application 

was downloaded (green color) or not (red color). Note that here apps are also coded by 

TalkingData. 

9. Percentage of Downloads 

This item supplements the information in the previous item by showing in% the number 

of applications downloaded (True) after click, or not downloaded (False). Note that the design 

study is considering a uniform distribution between True and False, with 50% for each side as 

indicated at the beginning of the feature engineering process. 

 

With all the items explained we can move on to data analysis. 

 

 

 

 

 

 



18 
 

8 – Exploratory Analysis II 

In this chapter we will present a series of conclusions by analyzing the dashboard 

presented earlier. 

1. Most Accessed Time 

One business opportunity is to identify the most accessed time to pass on information to 

the marketing team so that projects are geared toward that time to maximize application sales. 

 

Figura 12 – Most Accessed Time 

According to dashboard, the busiest time is at 12:00 PM in the China time zone. Valuable 

information for the marketing team, as targeting the most relevant advertisements for this 

period can generate more revenue for companies. 

It is worth noting that this is the maximum value considering the overall sum of the 3 days 

(7, 8 and 9), but for a more assertive focus we can observe the peak times each day, as shown in 

figure 11, further specifying the correct moments to come in with advertising and marketing. Day 

7, for example, shows the best time at 09:00 AM not at 12:00 PM. 
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2. Most Accessed Applications 

Looking at the apps with the most access doesn't mean we have higher download 

conversion, because not necessarily a click has been converted to a download, but advertisers 

pay per executed click. 

In this regard, care must be taken not to jump to conclusions without looking deeper into 

what the data is showing us. 

→ App 19 

 
Figura 13 – Most Accessed Apps - App19 

Firstly, with the most accesses we have app 19. In this case, we have an excellent 

download conversion: 

• Accesses: 14.680 

• Clicks with Downloads: 98.54% 

• Clicks without Downloads: 1.46% 

The time of greatest access is at 21:00 PM but the window of opportunity starts at       

15:00 PM and on day 9 we had the most clicks. 
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→ App 3 

 
Figura 14 - Most Accessed Apps - App03 

Second with the most accesses is app 3. In this case, we can see that most clicks are not 

converted to downloads: 

• Accesses: 10.370 

• Clicks with Downloads: 10.99% 

• Clicks without Downloads: 89.01% 

The highest access time occurs between 06:00 AM and 15:00 PM from devices with ID 1. 

Now let's look just at the False portion (89.01%) of App 3, possible fraudulent clicks: 
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Figura 15 - False Clicks App03 

As shown in Figure 14, IP “5314” is signaling a lot of clicks but few downloads for this app, 

but again it is not enough to punctually analyze just one piece of information to determine if this 

IP is a fraudulent user, it is best to analyze the click journey around all the portfolio. We will then 

perform this analysis on the next item, identifying how some IP's (including 5314) perform clicks 

with or without download. 

 

3. Click Journey by IP 

In this item we will explore how the following users behave within the analyzed period: 

• 5.348; 

• 5.314; 

• 53.454; 

• 114.276. 
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→ IP 5.348 

 
Figura 16 – Click Journey - IP 5.348 

• Accesses: 599 

• Clicks with Downloads: 43.07% 

• Clicks without Downloads:  56.93% 

• Highest Accesses Range: 17:00PM – 23:00PM 

• Accessed Apps with more Downloads: 19, 29, 10 

• Accessed Apps with fewer Downloads: 3, 12, 2 

• Day with most accesses: 7 

• Most used devices: 1 e 0 

Despite being the IP with the most clicks, there is no evidence that there is fraud in the 

click journey. Note that apps 3 and 12 indicate many clicks without downloading, but to say that 

we have no fraud in these apps we will analyze the journey of other IP's and identify if the same 

pattern occurs or if we have a significant number of downloads indicating that IP 5.348 performs 

fraud clicks on these apps generating unnecessary costs for developers. 
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→ IP 5.314 

 
Figura 17 - Click Journey - IP 5.314 

• Accesses: 536 

• Clicks with Downloads: 43.47% 

• Clicks without Downloads:  56.53% 

• Highest Accesses Range: 17:00PM – 23:00PM 

• Accessed Apps with more Downloads: 19, 29, 10 

• Accessed Apps with fewer Downloads: 3, 12, 2 

• Day with most accesses: 7 

• Most used devices: 1 e 0 

Without much variation, when compared to the first IP analyzed, it can be observed that 

less downloaded applications also follow the same pattern for this IP. This may indicate that these 

apps really don't have much of a download conversion rate, unlike what we thought would be 

fraudulent clicks. The analysis of the next IP's will confirm or refute this theory. 
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→ IP 53.454 

 
Figura 18 - Click Journey - IP 53.454 

• Accesses: 145 

• Clicks with Downloads: 13.10% 

• Clicks without Downloads:  86.90% 

• Highest Accesses Range: 17:00PM – 23:00PM 

• Accessed Apps with more Downloads: 19 

• Accessed Apps with fewer Downloads: 3, 12, 2 

• Day with most accesses: 9 

• Most used devices: 1 e 0 

Here we have an IP that is more likely to be fraudulent as the history of clicks without 

downloads is very low. A recommendation to be assertive would be: 

1. Initially, track more intensely this IP by extracting more clicks; 

2. Observe the apps with the least downloads and the percentage of clicks on each; 

3. Thirdly, look if access times have default entries because in this observation the peak 

hours are in the same pattern as the IPs previously analyzed, leaving some uncertainty 

about fraud, so acquiring more information can confirm this uncertainty. 
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→ IP 114.276 

 
Figura 19 - Click Journey - IP 114.276 

• Accesses: 116 

• Clicks with Downloads: 1.72% 

• Clicks without Downloads:  98.28% 

• Highest Accesses Range: Aleatório 

• Accessed Apps with more Downloads: 19, 10 

• Accessed Apps with fewer Downloads: 3, 12, 9 

• Day with most accesses: 9 

• Most used devices: 1 e 2 

 In this last example, we have 99% chance of being an IP responsible for fraudulent clicks. 

First of all, 98.28% of clicks made are not converted to downloads running away from the overall 

average; second there is no access pattern, note in the “Accesses by Hour” chart that access 

peaks occur at 00:00, 07:00, 10:00, 12:00, 21:00; third, note in the “Accesses By Hour each Day” 

that there is no constancy; Finally, considering the whole, this IP shows that app 19 (with the 

most downloads in all previous reviews) has low number of clicks with downloads. 

 This is only part of the data analysis, an in-depth study can provide many other 

opportunities for improvement and identification of business opportunities. 
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9 – Machine Learning Model Building 

In this chapter, we will build three different machine learning models in order to analyze 

which one we get the most accuracy from and then present new and unknown data and then 

evaluate if we have a reliable model. 

Machine Learning is an area of artificial intelligence that studies learning techniques by 

applying programming and computing to build mathematical models with the ability to get 

knowledge automatically based on the data provided. 

Through this data, the trained algorithm is able to make decisions when new data is 

presented to it, thus providing complex problem solving solutions that in many cases would be 

difficult for a person to perform. 

Within this concept we have 2 types of learning: 

• Supervised Learning 

In this type of learning, we have a set of input data and possible output data that 

should be used to train the model. In other words, by testing this model we can 

compare the predicted output data with that provided and evaluate the accuracy 

of the trained model. If unsatisfactory, it is possible to go back to the beginning of 

model creation and improve the predictor variables to perform new tests. 

 

• Unsupervised Learning 

In this other type of learning, we have an input data set but the outputs are 

unknown, so I can't compare the predicted data with the expected outputs. For 

this learning modality other techniques are applied, for example, the data will be 

grouped and the results will change according to the variables. 

 Machine Learning can be used to solve a range of problems from internet search 

suggestions, spam message tracking, to digital marketing usage. 

 For our business problem, searching for fraudulent clicks, we will use supervised learning, 

but before we go into creating the predictive model, let's understand better how I used a 

technique called cross-validation to get better performance from the machine learning model. 
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1. Cross – Validation 

During the Machine Learning process several iterations (repetitions) happen so that 

models can deliver better reliability. In this process many choices must be made, and each will 

generate a reflection, positive or negative, at the final result. To choose between more relevant 

arguments; machine learning model suited to the business problem; which variables to deliver 

to the predictive model; among others, can be an endless challenge. 

Fortunately, we have several techniques for evaluating and validating the predictive 

model based on the chosen variables, one of them being cross - validation.  

Imagine a scenario where we have 150,000 rows of data to analyze. Usually a sample of 

approximately 20%, corresponding to 30,000 random lines, would be set aside to perform 

validation at the end of the machine learning process and the remainder (80%) would be used to 

train the model. Because it is 20% of randomly collected data there is no guarantee that this data 

will generate the best validation performance. 

Maybe you should imagine that taking a larger amount of sample, somewhere between 

50% and 70%, could lessen the uncertainty and possible correct validation errors? Yes, but doing 

so will decrease the amount of data available to train the model and can lead to failures in the 

prediction process. 

In Cross - Validation the process of separating validation and training data happens 

dynamically, following image for better understanding: 

 
Figura 20 - Cross - Validation 

As noted in Figure 20, the dataset is divided into training data and validation data called 

folds. 
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How this process works: 

Initially each iteration will have a percentage of training data predefined by the folds, in 

which case we would have 2/3 of the data intended for model training and the remaining 1/3 for 

validation, since it was set fold = 3. 

This procedure is repeated for the amount of folds determined by the data scientist until 

100% of the data has been validated in consecutive iterations, providing us the model accuracy 

considering all dataset rows and not just those 20% selected only once. 

This way I do not need to separate just one (uncertain) sample of data as validation will 

occur with multiple samples passing through the entire dataset. 

Finding the optimal value for folds can be a challenge when designing Machine Learning 

algorithms as high numbers can yield better results but also slow and lose performance due to 

the requested processing cost. 

The ideal scenario will depend on each business problem, for this project I used folds 

ranging from 1 to 5 and the most appropriate number found between performance and 

processing was fold = 3. 

 
Figura 21 – Parameterization of Cross - Validation and Accuracy 

2. Evaluation Metric 

To validate the model I used “Accuracy” as a metric. Accuracy can be represented by the 

following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 𝑥 100 

This formula divides the correct predictions by the total number of instances in the 

dataset generating a number as a percentage of prediction accuracy. 

There are other evaluation metrics, such as Root Mean Square Error (RMSE) where the 

mean square error is evaluated, but, as this is a classification problem, where target values

assume a fixed number (0 or 1), the accuracy will determine accurately the correct amount 

between errors and success prediction. 



29 
 

3. Machine Learning Algorithms 

As a solution proposal I will perform the evaluation using three different algorithms, 

CART, KNN and Random Forest, explained below. 

3.1 CART11 
Cart, Classification and Regression Trees, is a methodology that allows you to perform 

both classification and regression trees, that is, to classify a categorical variable indicating which 

class would fit most accurately or to predict the value of a continuous variable within the 

regression. 

Each problem will ask for a specific type of application, for this project the classification 

will be used. 

The CART algorithm works with questions and answers to make decisions. With each 

question answered a different path is followed within the tree until the final node is reached and 

the final answer is completed. 

Um diferencial do CART está no fato de que o algoritmo é capaz de utilizar as mesmas 

variáveis mais de uma vez em diferentes partes da árvore eliminando possíveis dependências 

complexas existentes entre elas. Com isso consigo realizar também o cross – validation com mais 

qualidade. 

 

Figura 22 - CART train 

Let's see how the model behaved in this training run. 

 

 

 
11 https://www.rdocumentation.org/packages/MachineLearning/versions/0.1.3/topics/CART 

https://www.rdocumentation.org/packages/MachineLearning/versions/0.1.3/topics/CART
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Figura 23 – CART Modeling Status 
Figure 23 summarizes how the machine learning model developed during training: 

• 100,000 samples were used; 

• We have in the model 15 predictor variables and 2 classes to predict; 

• We use the Cross - Validation method with fold = 3 with each iteration having 

approximately 66,666 lines for training; 

• And 3 accuracy values were analyzed according to the cp complexity coefficient, 

and the best value was cp = 0.05826 generating 84.44% of accuracy. 

Accuracy chart follows: 

 
Figura 24 - CART Model Accuracy Graph 
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3.2 KNN12 
K-nearest neighbors is an algorithm that can also be used for classification or regression 

and works by finding the nearest neighbors of the predicted value where K is satisfied: 

 
Figura 25 - kNN and relation k 

Note that for each circle an amount of data is wrapped depending on the specified k value. 

When k = 5 the algorithm finds the 5 closest data to target and votes for the highest amount, 

which in this case would be the class ‘X’. 

The key to success for this algorithm lies in the correct choice of parameter k keeping in 

mind that a high value brings more error to the training because the increase of the area 

encompasses more classes, while the reflection of the error in the validation data tends to 

decrease to a certain limit and then increases considerably. 

Segue figura 25 exemplificando este processo: 

 

 

 
12 https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/kNN 

https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/kNN
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Figura 26 – Choosing Factor k 

KNN can be trained as follows: 

 
Figura 27 - kNN train 

Let's see how the model behaved in this training run. 
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Figura 28 - kNN Modeling Status 

Figure 28 summarizes how the machine learning model developed during training: 

• 100,000 samples were used; 

• We have in the model 15 predictor variables and 2 classes to predict; 

• We use the Cross - Validation method with fold = 3 with each iteration having 

approximately 66,666 lines for training; 

• • And 3 accuracy values were analyzed according to the k coefficient of 5, 7 and 9 

with the best value being k = 5 giving 73.54% of accuracy. 

Accuracy chart follows: 

 
Figura 29 - Accuracy Graph of the kNN Model 
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3.3 Random Forest13 
As the name suggests, randomForest means Random Forest, which in Data Science we 

can make analogy to Decision Trees where each tree has a depth and decides between its 'leaves' 

which is the best path to travel. 

Imagine an inverted tree: 

 

Figura 30 – Inverted tree 

End nodes (or leaves) are at the bottom of the decision tree. This means that the decision 

trees are drawn upside down. Thus, the leaves are the bottom and the roots are the tops (figure 

above). 

A Decision Tree works with both categorical and continuous variables and works by 

dividing the population (or sample) into subpopulations (two or more sets) based on the most 

significant divisors of the input variables. For this and many other reasons, decision trees are 

used in classification and regression problems where the supervised learning algorithm has a 

predefined target variable. 

In randomForest, or Random Forest, we grow multiple trees instead of a single tree. But 

how does the classification process work? Initially for classifying a new attribute-based object, a 

tree generates a classification for that object (which is as if the tree gives votes for this class). 

This process goes on for each tree in the forest and finally, the forest chooses the classification 

with the most votes (from all trees in the forest). 

As shown in figure 31, we can have n trees and each tree can have as many leaves as it 

wants. This is where we have a problem, because a shallow tree that has been trained to classify 

an object may not be accurate because it has learned little (higher error), or in other words 

 
13 https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest 

https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
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underfitting. At the other extreme we have overfitting, that is, if no limit is set the model will give 

100% accuracy in the training set because it ends up making a leaf for each observation but will 

fail in validation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 31 – randomForest 
The ideal point is where the error in the test data (validation) is as little as possible (target 

in figure below), giving the model better accuracy. 

 
 

 

 

 

 

 

 

 

 

Figura 32 - Underfitting x Overfitting 

In this project we will not study underfitting or overfitting because we are studying cross 

- validation, so we go straight to the construction of the machine learning model: 

 
Figura 33 - randomForest train 
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Figura 34 - randomForest Model Status 

Figure 34 summarizes how the machine learning model developed during training: 

• 100,000 samples were used; 

• We have in the model 15 predictor variables and 2 classes to predict; 

• We use the Cross - Validation method with fold = 3 with each iteration having 

approximately 66,666 lines for training; 

• And 3 accuracy values were analyzed according to the tree depth being mtry = 2, 

8 and 15 where the best mtry value = 8 and 91.42% of accuracy. 

Segue gráfico da acurácia: 

 
Figura 35 - Accuracy Graph of randomForest Model  
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3.4 Choosing the Best Machine Learning Model 
Choosing the best machine learning model is questionable because it depends on a 

number of factors such as training time, accuracy, complexity, available data, and more where 

each business problem will determine your need. 

Before we make a decision, let us graphically analyze the results: 

 
Figura 36 - Model Accuracy 

As shown in Figure 36, the highest accuracy is in the randomForest (rf) model, followed 

by CART and kNN. 

Each model had a variation in accuracy during training characterized by line sizes in figure 

36, with CART being the largest variation according to the table: 

 
Figura 37 - Accuracy Variation 

 For this project we will consider Mean Accuracy (“Mean” value above) as metric. 

 Min. 1st Qu. Median Mean 3rd Qu. Max.

knn 0.733657 0.734921 0.736185 0.735391 0.736256 0.736327

cart 0.822074 0.838811 0.855549 0.844411 0.855579 0.855609

rf 0.913479 0.913644 0.913809 0.914231 0.914605 0.915402
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In addition to accuracy we can identify how long each model took to be trained and then 

decide which model to use for validation: 

Model Time to Train Accuracy 

kNN 4 min 73,54% 

CART 9 seg 84,45% 

randomForest 10 min 91,42% 

Figura 38 – Time to train models 

In Figure 38 we can see how long it took to train randomForest when compared to CART, 

but as I am not looking for agility in training time but accuracy in the delivery of results I will 

choose to use randomForest to continue the project. 

Although CART does not provide the best accuracy, it offers a huge advantage when it 

comes to performance. Perhaps for a corporate environment CART would be the best choice and 

with it a study of how to improve the parameterization of the model to gain greater accuracy and 

consequently surpass randomForest. 

4. Making Predictions and Evaluating the Predictive Model 

To evaluate the predictive model initially new and unknown data were presented to the 

model and then we used what we call the Confusion Matrix. 

4.1 Confusion Matrix 

Confusion Matrix is one of many performance gauges for evaluating data predicted by a 

machine learning model. We already know that the accuracy is close to 92% but what about the 

data that was not classified correctly? A Confusion Matrix can tell us what happened to all 

classified data, following image for a better understanding of its operation: 

  1 
(Original Data) 

0 
(Original Data) 

1 
(Predicted Data) TruePositive FalsePositive 

0 
(Predicted Data) FalseNegative TrueNegative 

Figura 39 - Confusion Matrix 

Let's interpret what the Confusion Matrix is telling us: 
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• TruePositive(TP): It means that my model predicted from the data provided that 

the class would be 1 and it really is correct, it was supposed to be 1. 

• FalseNegative(FN): It means that my model predicted from the data provided that 

the class would be 0 but was supposed to be 1. 

• FalsePositive(FP): It means that my model predicted from the data provided that 

the class would be 1 but also missed because it was supposed to be 0. 

• TrueNegative(TN): It means that my model predicted from the data provided that 

the class would be 0 and this time it was right because it was supposed to be 0. 

Our goal is to predict and succeed so we seek to maximize the values present in TP and 

TN, and on the other hand mitigate values of FN and FP.  

Our machine learning model returned the following results: 

  1 – Non-Fraud Click 
(Original Data) 

0 – Possible Fraud Clicks 
(Original Data) 

1 – Non-Fraud Click 
(Predicted Data) TP = 43.865 FP = 2.264 

0 – Possible Fraud Clicks 
(Predicted Data) FN = 6.135 TN = 47.736 

Figura 40 - Confusion Matrix my model 

As the Confusion Matrix of Figure 40 illustrates, we have TP and TN with the highest values 

indicating that our model has excellent performance in predicting a fraudulent click or not. 

Regarding the FP and FN, they have 2.26% and 6.13%, respectively, of wrong predicted 

data. An improvement that could be made would be to decrease the percentage of FN as these 

were non-fraud clicks but were considered to be fraudulent by the predictive model blocking 

users improperly.  
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10 – Final Considerations 

The initial statistical analysis (percentage of distributed data) made all the difference in 

the project development since there was no induction for a given result but equity. Training the 

model with variable unbalance leads to failure in the predictive process; improving balance 

makes the project develop with better quality. 

For this project we also studied a number of important concepts in the data science 

process starting with feature engineering performing data cleansing and transformation 

generating better opportunities for machine learning models. 

By adding new variables it was possible to track the click journey, as we entered the 

exploratory analysis. For this was used PowerBi generating an interactive dashboard where new 

business opportunities were identified. 

One of the opportunities found was identifying the time of most accesses (total and 

individualized by IP), valuable information for marketing teams who could draw a pipeline 

identifying the sales funnel, in other words, app downloads conversion and strategically be part 

of the customer journey from the first contact with the app until the moment they download. 

During the exploratory phase the analysis of fraudulent clicks was developed through the 

complete click journey of some users and a blacklist could be created, since it was possible to 

identify the access pattern of each IP, analyzing the applications with more clicks and fewer 

downloads, devices used, access times, and more. Delivering the dashboard with reporting to 

decision makers in the organization will surely create a competitive advantage for the company. 

Entering the creation of the machine learning model we studied an optimization method 

called Cross - Validation that assisted in the separation of variables during the training of CART, 

kNN and randomForest models that provided accuracy of 84.45%, 73.54% and 91.42% and time 

to train around 4 minutes, 9 seconds and 10 minutes respectively. 

The choice of the model was based on accuracy rather than training time, so 

randomForest was used to predict unknown data returning an excellent accuracy of 

approximately 92% evidenced in the Confusion Matrix. 

To further enhance this result it would be possible to focus more intensely on improving 

model parameters, or adding new feature engineering variables, or even collect more data by 

focusing on the resources analyzed to train the model. 
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Source Code 
 

## Talking Data Project - Building a Predictive Model for Fraudulent Click Analysis ----- 

 

# Obs: If you have problems with accenting, see this link.: 

# https://support.rstudio.com/hc/en-us/articles/200532197-Character-Encoding 

 

# Configuring the working directory 

# Quote the working directory you are using on your computer. 

 

## Directory -------------------------------------------------------------------------------------- 

# SET WORKING DIRECTORY 

setwd("C:/FCD/BigDataRAzure/Cap20/TalkingData") 

# GETTING CURRENT DIRECTORY 

getwd() 

 

## Kaggle -------------------------------------------------------------------------------------- 

# https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data 

 

## Data Description -------------------------------------------------------------------------------------- 

# - train.csv - the training set 

# - train_sample.csv - 100,000 randomly-selected rows of training data, to inspect data before downloading full set 

# - test.csv - the test set 

#X- sampleSubmission.csv - a sample submission file in the correct format 

#X- test_supplement.csv - This is a larger test set that was unintentionally released at the start of the competition. It is not necessary 

to use this data, but it is permitted to do so. The official test data is a subset of this data. 

 

## Data Dictionary -------------------------------------------------------------------------------------- 

# ip -> ip address of click 

# app -> app id for marketing 

# device -> device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.) 

# os -> os version id of user mobile phone 

# channel -> channel id of mobile ad publisher 

# click_time -> timestamp of click (UTC) 

# attributed_time -> if user download the app for after clicking an ad, this is the time of the app download 

# is_attributed -> the target that is to be predicted, indicating the app was downloaded 

 

# Note that ip, app, device, os, and channel are encoded. 

 

## Library -------------------------------------------------------------------------------------- 

# IMPORTING NECESSARY LIBRARIES 

library(data.table) 

library(dplyr) 

# Using readr package  

#install.packages("readr") 

library(readr)              # Using to write_csv 

#install.packages("RColorBrewer") 

library("RColorBrewer")     # Color Library to plot Graphics 

library(ggplot2) 

library(gridExtra) 



42 
 

library(lattice) 

library(caret) 

library(randomForest) 

library(lubridate)          # So I could work with date/time in a more intuitive syntax 

library(scales) 

 

## Datasets -------------------------------------------------------------------------------------- 

if (FALSE) { 

# Loading the dataset "train_sample.csv" with 100,000 rows 

# Eliminating 'attributed_time' because it is the same information as 'is_attributed', avoiding Data Leakage to the predictive model 

train <- "train.csv" 

train.df <- fread(train, drop = c('attributed_time')) 

train.df$n <- 1:nrow(train.df) # will be used to sample data and then eliminated 

 

# Checking if we have balanced data between 1 and 0 of target variable so it'll be a fair prediction model 

nrow(filter(train.df, is_attributed == 1))/nrow(train.df)*100 

nrow(filter(train.df, is_attributed == 0))/nrow(train.df)*100 

 

# Unfortunately not, in fact we have: 

# ~ 00.25% in 1 and  

# ~ 99.75% in 0 

# That is a real problem because I have to create an unbiased model. I'll have to deal with it. 

 

# First let's separe all 1 data and 0 data 

onedata <- filter(train.df, is_attributed == 1) 

zerdata <- filter(train.df, is_attributed == 0) 

 

# Now, as we have too many data and too less memory, let's get a sample of 50.000 of both files 

set.seed(123) 

samp <- createDataPartition(y = onedata$n, p=0.1096, list = FALSE) 

set.seed(123) 

onedata_train <- onedata[samp,] 

onedata_train <- onedata_train[1:50000,] 

set.seed(123) 

onedata_test <- sample_n(onedata[-samp,], 50000) 

 

set.seed(321) 

samp <- createDataPartition(y = zerdata$n, p=0.0002711, list = FALSE) 

set.seed(321) 

zerdata_train <- zerdata[samp,] 

zerdata_train <- zerdata_train[1:50000,] 

set.seed(321) 

zerdata_test <- sample_n(zerdata[-samp,], 50000) 

 

# Binding balanced data 

train_sample.df <- rbind(onedata_train, zerdata_train) 

test_sample.df <- rbind(onedata_test, zerdata_test) 

train_sample.df$n <- NULL 

test_sample.df$n <- NULL 

 

# Checking again if we have balanced data between 1 and 0 of target variable so it'll be a fair prediction model 
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nrow(filter(train_sample.df, is_attributed == 1))/nrow(train_sample.df)*100 

nrow(filter(train_sample.df, is_attributed == 0))/nrow(train_sample.df)*100 

 

nrow(filter(test_sample.df, is_attributed == 1))/nrow(test_sample.df)*100 

nrow(filter(test_sample.df, is_attributed == 0))/nrow(test_sample.df)*100 

 

# Now we have 100.000 data: 

# - 50.00% in 1 and  

# - 50.00% in 0 

 

#View(train_sample.df) 

#View(test_sample.df) 

 

# Cleaning memory 

rm(train) 

rm(train.df) 

rm(samp) 

rm(onedata) 

rm(zerdata) 

rm(onedata_test) 

rm(onedata_train) 

rm(zerdata_test) 

rm(zerdata_train) 

} 

## Just to use after first dataset loaded ---- 

if (TRUE) { 

#write_csv(train_sample.df, "20A-tr.csv") 

#write_csv(test_sample.df, "20A-ts.csv") 

train_sample.df <- fread("20A-tr.csv") 

test_sample.df <- fread("20A-ts.csv") 

} 

 

## Feature Engineering -------------------------------------------------------------------------------------- 

 

# Transforming to China TimeZone, just to use at PowerBi 

#train_sample.df$click_time <- ymd_hms(train_sample.df$click_time) + hours(8) 

#test_sample.df$click_time <- ymd_hms(test_sample.df$click_time) + hours(8) 

 

# First of all I will unite both datas to one data and deal with all Feature Engineering 

# Control Variable 

train_sample.df$control <- 1 

test_sample.df$control <- 0 

 

# Binding 

datatemp <- rbind(train_sample.df, test_sample.df) 

 

# Just for convenience I will rename the predictor variable 'is_attributed' to 'target' 

datatemp$target <- datatemp$is_attributed 

datatemp$is_attributed <- NULL 

 

# CHECKING FOR MISSING VALUES: NO! 
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any(is.na(datatemp)) 

 

# CHECKING VARIABLE TYPES: ALL ARE int TYPE EXCEPT click_time THAT IS char 

glimpse(datatemp) 

 

# As we can see, all variables are 'int' type, but 'click_time' that is char 

# click_time should be in Date-Time format, let's make some changes: 

 

# Transforming to dttm 

datatemp$click_time <- ymd_hms(datatemp$click_time) 

 

# Creating New Variables just by separating the date and time of 'click_time' 

# Year 

datatemp$year <- year(datatemp$click_time) 

 

# Month 

datatemp$month <- month(datatemp$click_time) 

#datatemp$Month <- month(datatemp$click_time, label = TRUE)   # if month labeled wanted 

 

# Day 

datatemp$day <- day(datatemp$click_time) 

 

# Hour 

datatemp$hour <- hour(datatemp$click_time) 

 

# Minutes 

datatemp$minutes <- minute(datatemp$click_time) 

 

# Second 

datatemp$second <- second(datatemp$click_time) 

 

# yday 

datatemp$yday <- yday(datatemp$click_time) 

 

# mday 

#datatemp$mday <- mday(datatemp$click_time) 

 

# wday 

datatemp$wday <- wday(datatemp$click_time) 

#datatemp$wday <- wday(datatemp$click_time, label = TRUE) # if wday labeled wanted 

 

# week 

datatemp$week <- week(datatemp$click_time) 

 

# Internal integer representation of click_time 

datatemp$click_time <- unclass(datatemp$click_time) 

 

# Separating train and test again 

train_sample.df <- filter(datatemp, control == 1) 

train_sample.df$control <- NULL 

test_sample.df <- filter(datatemp, control == 0) 
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test_sample.df$control <- NULL 

 

# Rescaling click_time from 0 to 1 to get better results 

# Note: I'm not changing the values, just the scale 

ggplot(data = train_sample.df, aes(click_time)) + 

  geom_density(kernel = 'gaussian') 

#hist(train_sample.df$click_time) 

train_sample.df$click_time <- rescale(train_sample.df$click_time) 

test_sample.df$click_time <- rescale(test_sample.df$click_time) 

 

# Plotting Rescaled click_time histogram 

ggplot(data = train_sample.df, aes(click_time)) + 

  geom_density(kernel = 'gaussian') 

#ggplot(data = test_sample.df, aes(click_time)) + 

#  geom_density(kernel = 'gaussian') 

 

# Cleaning Memory 

rm(datatemp) 

 

# CSV to Power BI 

#write_csv(train_sample.df, "20A-PowerBiData.csv") 

 

## Exploratory Analysis -------------------------------------------------------------------------------------- 

# All exploratory analysis were made and transported to PowerBi, so I won't explore it here 

if (FALSE) { 

# IP's with most access 

ipmostac <- train_sample.df %>% 

              select(ip) %>% 

              count(ip) %>% 

              arrange(desc(n)) 

 

View(ipmostac[1:20,1:2]) 

 

# App's with most access 

apmostac <- train_sample.df %>% 

              select(app) %>% 

              count(app) %>% 

              arrange(desc(n)) 

 

View(apmostac[1:20,1:2]) 

 

# Device most used 

dvmostac <- train_sample.df %>% 

              select(device) %>% 

              count(device) %>% 

              arrange(desc(n)) 

 

View(dvmostac[1:10,1:2]) 

 

# Now let's study the click journey of IP on top 

topip <- as.numeric(ipmostac[1,1]) 
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# App's most used by IP on top 

topipap <- train_sample.df %>% 

            select(ip, app) %>% 

            filter(ip == topip) %>% 

            count(ip, app) %>% 

            arrange(desc(n)) 

 

View(topipap) 

 

# How Many access per day does the top ip 

topipdy <- train_sample.df %>% 

            select(ip, day) %>% 

            filter(ip == topip) %>% 

            count(ip, day) %>% 

            arrange((day)) 

 

View(topipdy) 

 

# When does top ip access per day 

topiphr <- train_sample.df %>% 

            select(ip, day, hour) %>% 

            filter(ip == topip) %>% 

            count(ip, day, hour) %>% 

            arrange(day) 

 

View(topiphr) 

 

# App's downloaded or not by top ip 

topipdl <- train_sample.df %>% 

            select(ip, app, target) %>% 

            filter(ip == topip) %>% 

            count(ip, app, target) 

 

View(topipdl) 

 

# Cleaning Memory 

rm(ipmostac) 

rm(apmostac) 

rm(dvmostac) 

rm(topip) 

rm(topipap) 

rm(topipdy) 

rm(topiphr) 

rm(topipdl) 

} 

 

## Machine Learning I -------------------------------------------------------------------------------------- 

# Using Cross Validation I'll run all algorithms with 3 fold 

trctrl <- trainControl(method="cv", number=3) 

# Metric to get mesures of erros 
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evaluation <- "Accuracy" 
 
# Building Models 
# Target as factor to make predictions 
train_sample.df$target <- as.factor(train_sample.df$target) 
 
# kNN 
Inicio <- print(Sys.time()) 
set.seed(9) 
model_knn <- train(target~., data=train_sample.df,  
                   method="knn", metric=evaluation,  
                   trControl=trctrl) 
Fim <- print(Sys.time()) 
cat('Processo kNN Finalizado em: ', Fim-Inicio, ' segundos!') 
plot(model_knn) 
 
# CART 
Inicio <- print(Sys.time()) 
set.seed(9) 
model_cart <- train(target~., data=train_sample.df,  
                    method="rpart", metric=evaluation,  
                    trControl=trctrl) 
Fim <- print(Sys.time()) 
cat('Processo CART Finalizado em: ', Fim-Inicio, ' segundos!') 
plot(model_cart) 
 
# Random Forest 
Inicio <- print(Sys.time()) 
set.seed(9) 
model_rf <- train(target~., data=train_sample.df,  
                  method="rf", metric=evaluation,  
                  trControl=trctrl) 
Fim <- print(Sys.time()) 
cat('Processo RF Finalizado em: ', Fim-Inicio, ' segundos!') 
plot(model_rf) 
plot(model_rf$finalModel) 
 
# Cleaning Memory 
rm(trctrl) 
rm(evaluation) 
 
# Gathering accuracy of models 
acc_result <- resamples(list(knn=model_knn, cart=model_cart, rf=model_rf)) 
summary(acc_result) 
 

# Plotting Models Accuracy and Kappa 
dotplot(acc_result) 
 
# See model 
print(model_rf) 
 
# Making some predictions and evaluating results using a Confusion Matrix 
test_sample.df$target <- as.factor(test_sample.df$target) 
test <- test_sample.df 
test$target <- NULL 
 
pred_rf <- predict(model_rf, test) 
confusionMatrix(pred_rf, test_sample.df$target) 


